Lesson Plan
Subject: Transportation Activities Algebra/Geometry/Physical Science/Physics (6 ${ }^{\text {th }}$. 12th grades)

Lesson Focus: Transportation Engineering

Curriculum Standards: Science (NSES) and Math (Common Core) are provided on last two pages of this document.

Resources:

PowerPoint Presentations, Handouts, and photos are attached (See tabs above.)

Materials (per group):

Materials from 1 K'NEX Education Forces, Energy, and Motion Set

(Set includes 442 K'NEX® parts, along with a Battery, Spring and Fly-wheel motor - enough to build 11 vehicles, up to four at a $^{\prime}$ time. Supports 12-16 students working in teams. Grades 5-9. Building instructions and comprehensive teacher's guide aligned to Science, Technology, Engineering and Math Standards included. Packaged in a strong storage tray with snap-on lid.)

Preparing the lesson:

1. Contact Dr. Stephanie Ivey, ssalyers@memphis.edu, for additional information or to schedule a guest speaker.
2. Set up testing area(s) as described for each challenge. This can be done in a long hallway or on the sidewalk. Imperfections in the sidewalk surface will add more of a challenge.
3. Provide a KNex kit for each student team.

Teaching the Lesson:

1. Icebreaker: Brainstorming Activity (See Tab above.)
2. Knex Vehicle Challenge \#1

Build a vehicle that meets the following constraints (students may use the instruction manual for guidance, but the vehicle can be completely their design):

1. Only made of K'nex pieces
2. Uses only 1 spring motor (no other motors allowed).

The Challenge: Design a vehicle using the above constraints. The vehicle must travel 15 feet and land within a 2' x 3' rectangular space that has been taped off prior to testing. This task must be completed in the least amount of time.

Assessment (Scoring): 100 points is awarded to the top scoring team. Other teams are ranked from least to greatest penalty, and points are awarded with 10 points deducted for each successive rank.

3. Knex Vehicle Challenge \#2

Sketch or photograph the vehicle, then dismantle it and rebuild it in the shortest time.
Constraints: Students must only use Knex pieces, and may use only one spring motor (no other motors). All members of the team must be able to build the vehicle, as a team member will be selected at random by the program directors to perform the timed vehicle assembly.

Assessment (Scoring): 100 points is awarded to the top scoring team. Other teams are ranked from least to greatest penalty, and points are awarded with 10 points deducted for each successive rank.

4. Technical Presentations

Following challenges, teams should give a technical presentation. (Show Technical Presentation PowerPoint.) Provide teams time to prepare and present.

5. Knex Vehicle Challenge \#2

Teams will build three (3) vehicles from the KNex Kit materials, and will collect time data for the vehicles to travel a 15 -foot course and land in a 2 ' $\times 1$ ' area that is taped off.

Once teams have completed this task, they will discuss amongst their team members the factors performance of the vehicles.
***only K'nex pieces may be used, and only ONE spring motor

The Challenge:

Students will select one vehicle with the best performance to be in the actual contest.

Assessment (Scoring): 200 points will be awarded to the team with the shortest time to traverse the 15 -foot course. Other teams will be ranked in ascending order of time recorded on the course, and points are awarded with 20 points deducted for each successive rank.

6. Technical Presentations

Following challenges, teams should give a technical presentation. (Show Technical Presentation PowerPoint.) Provide teams time to prepare and present.

8. Knex Vehicle Challenge \#3

The Challenge: Inside the 2' X 3 ' box at the finish line of challenge \#1, is a $1^{\prime} \mathrm{X} 1^{\prime}$ box. The car must carry a load of up to 6 golf balls. If the car stops inside the 2 ' $\times 3$ ' box, each ball is worth 1 point. If the car stops inside the $1^{\prime} \times 1$ ' box, each ball is worth 3 points. If the car does not land in either box, no points are awarded.

Once the first car stops, a second car is sent from the target box back to the starting line. (The second car does not carry any golf balls.)

When the second car crosses the starting line, the first car can't be sent again to score points with the golf balls.

Teams have 3 minutes to score as many points as possible.

Finish zone performance: 100 points is awarded to the top performing team. Other teams are ranked from least to greatest penalty, and points are awarded with 10 points deducted for each successive rank.

14. Technical Presentations

Following challenges, teams should give a technical presentation. (Show Technical Presentation PowerPoint.) Provide teams time to prepare and present.

15. Knex Challenge \#4

The Challenge: Student teams will design a vehicle that traverses a 20 -foot course with the greatest speed, lowest construction time, that stops within a 2' square finish zone, and transports cargo. Students will have the option of including 1-4 cargo containers (golf balls) in their vehicle.

Constraints: Students must only use Knex pieces, and may only use spring motors (no restriction on the number of motors). All members of the team must be able to build the vehicle, as a team member will be selected at random by the program directors to perform the timed vehicle assembly.

Scoring: Scores will consist of the sum of the team's scores for travel time, construction time, finish zone performance, and cargo delivery.

Travel time: The team with the lowest travel time will receive 100 points. All other teams will be ranked in ascending order of travel time, with 10 points deducted for each successive rank.

Construction time: the team with the lowest construction time will receive 100 points. All other teams will be ranked in ascending order of construction time, with 10 points deducted for each successive rank.

Finish zone performance: 100 points is awarded to the top performing team (no penalty). Other teams are ranked from least to greatest penalty, and points are awarded with 10 points deducted for each successive rank. Penalty is assessed based upon the shortest distance from the vehicle to the box. If only part of the vehicle lands outside of the box, penalty is assessed as the length of the vehicle extending from the box. Penalties will be recorded in inches.

Cargo Delivery: The team will receive 25 points for each cargo container successfully delivered (maximum of 100 points -4 golf balls). Successful delivery is judged as traveling at least a 20 -foot distance.

16. Technical Presentations

Following challenges, teams should give a technical presentation. (Show Technical Presentation PowerPoint.) Provide teams time to prepare and present.

19. Final Challenge

The Challenge: Student teams will design a vehicle that traverses a course with the greatest speed, lowest construction time, lowest cost, and that stops within each of three destination 'cities', while transporting cargo. Students begin the journey with four cargo containers (golf balls), and will remove one at each stop (thus will return to the base city with one remaining container).

Constraints: Students must only use Knex pieces, and may only use spring motors (no restriction on the number of motors). All members of the team must be able to build the vehicle, as a team member will be selected at random by the program directors to perform the timed vehicle assembly.

Assessment (Scoring): Scores will consist of the sum of the team's scores for travel time, construction time, delivery performance, and cost.

Travel time: the team with the lowest travel time will receive 100 points. All other teams will be ranked in ascending order of travel time, with 10 points deducted for each successive rank.

Construction time: the team with the lowest construction time will receive 100 points. All other teams will be ranked in ascending order of construction time, with 10 points deducted for each successive rank.

Cost: the team with the lowest cost for the vehicle (based upon cost sheets provided) will receive 100 points. All other teams will be ranked in ascending order of cost, with 10 points deducted for each successive rank.

Delivery Performance: To complete a delivery, the vehicle must stop within the city boundaries. All refuels are charged $\$ 50$ and any repair to the vehicle (including replacing dropped freight) is charged $\$ 100$.

20. Technical Presentations

Following challenges, teams should give a technical presentation. (Show Technical Presentation PowerPoint.) Provide teams time to prepare and present.

Closing Activity or Extension: Have students do additional research on career opportunities in Transportation Engineering or other branches of Civil Engineering.

NSES Content Standards Alignments

National Science Education Standards (Grades 9-12)
Students will develop an understanding of:

UNIFYING CONCEPTS AND PROCESSES

- Systems, order, and organization
- Evidence, models, and explanation
- Change, constancy, and measurement
- Form and function

SCIENCE AS INQUIRY

- Abilities necessary to do scientific inquiry
- Understanding about scientific inquiry

PHYSICAL SCIENCE

- Structure and properties of matter
- Motions and Forces

Use laws of motion to calculate precisely the effects of forces on the motion of objects.

- Conservation of energy and increase in disorder
- Interaction of energy and matter

HISTORY AND NATURE OF SCIENCE

- Nature of science endeavor
- Nature of science knowledge

Recognise that science uses empirical standards, logical arguments, and skepticism.
Recognise that scientific explanations must be consistent with experimentation and observations, and must make accurate predictions.

- Historical perspectives

Reprinted with permission from 1996 National Science Education Standards by the National Academy of Sciences, Courtesy of the National Academies Press, Washington, D.C

Standards: Science

Common Core Standards Alignments

Common Core State Standards for Mathematics at the High School Level
MATHEMATICAL PRACTICES - ASSOCIATED WITH MATHEMATICS AT ALL GRADE LEVELS
1. Make sense of problems and persevere in solving them
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathermatics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
NUMBER AND QUANTITY
The Real Number System
- Use properties of rational and irrational numbers.
Quantities
- Reason quantitatively and use units solve problems.
The Complex Number System
- Perform arithmetic operations with complex numbers.
ALGEBRA
Seeing Structure in Expressions
- Write expressions in equivalent forms to solve problems.
Creating Equations
- Create equations that describe numbers or relationships.
Reasoning with Equations and Inequalities
- Understand solving equations as a process of reasoning and explain the reasoning.
- Solve equations and inequalities in one variable.
- Solve systerns of equations.
- Represent and solve equations graphically.
FUNCTIONS
Linear, Quadratic, and Exponential Models
- Interpret expressions for functions in terms of the situation they model.

